
G. CASCARANO AND C. GIACOVAZZO 825 

(4) Is the active use of psi-zero triplets always 
advisable? Often, structures suffering by pseudotransla- 
tional symmetry show a bad psi-zero FOM, even for the 
correct solution. In this case, a phasing process that tries 
to improve the psi-zero FOM will hinder rather than 
favour the crystal structure solution. If structure factors 
are renormalized and triplet reliabilities are re-estimated 
by using the information on pseudotranslational symme- 
try as prior (Cascarano, Giacovazzo & Luir, 1987), then 
the psi-zero FOM is usually better and use of (12) works 
fine. In SIR92, in order to avoid the psi-zero contribution 
to (12) overcoming the contributions of the strong triplets 
and the negative quartets, we use a maximum of NLAR/3 
weak reflections to construct psi-zero triplets (NLAR is 
the number of reflections used for constructing strong 
triplets). In this way, the active use of psi-zero triplets 
does not hinder the crystal structure solution also for 
CIME, CUIMID, ERICA, FEGAS, HOV1 and POCRO, 
which suffer from pseudotranslational symmetry. 

Concluding remarks 

The psi-zero triplets have thus far been considered as a 
tool for calculating a powerful figure of merit (Cochran 
& Douglas, 1957) for recognizing the correct phase set 
among numerous trial solutions. In a recent paper, 
Giacovazzo (1993) proposed their active use in the 
phasing process: in this paper, we describe the theoretical 

background necessary for a reasonable active use of the 
psi-zero triplets and the first applications of the method. 

The authors thank Miss C. Chiarella for technical 
support. 
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Abstract 

The exact diffraction curve of the Fibonacci superlattice 
is calculated using the semi-kinematical approximation 
of dynamical X-ray diffraction. The properties of the 
discrete Fourier transform of quasiperiodically arranged 
layers are employed to derive explicit approximate 
formulae for the diffracted intensity and the angular 
positions of peaks. The exact and approximate curves 
are compared by a numerical simulation and a good 
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agreement is found. The measurement of the diffraction 
curve was performed on the generalized Fibonacci 
superlattice built by stacked Fibonacci generations. This 
superlattice belongs to the same class of local isomor- 
phism as the Fibonacci superlattice if both are infinitely 
thick. The explicit approximate formulae enabled the 
fitting of the structural parameters of the superlattice 
even in the low-resolution experimental set-up when the 
fitting of the whole measured diffracti(m curve was not 
possible. 

Acta Crystallographica Section A 
ISSN 0108-7673 ©1995 



826 X-RAY DIFFRACTION ON FIBONACCI SUPERLATHCES 

I. Introduction 

The Fibonacci lattice is a one-dimensional quasiperiodic 
structure with long-range order. The sequence of two 
building layers A, B forming the kth generation F k of 
the Fibonacci lattice is given by the recurrent Fibonacci 
rule F k = Fk_iFk_ 2, starting with F 0 = B, F l = A. The 
infinite Fibonacci lattice is the limit of its generations 
f = limk~ooF k = A B A A B A B A A B A A B . . .  

The intensity in diffraction experiments is in the first 
Born approximation proportional to the square of the 
modulus of the Fourier transform of the electron density. 
The quasiperiodic arrangement of the Fibonacci super- 
lattice (FSL) results in self-similarity in the Fourier 
transform of its density (Steinhardt & Levine, 1987). The 
calculations of the discrete Fourier transform of point 
density arranged according to the Fibonacci rule were 
worked out earlier using different methods. The cut and 
projection method was established by Zia & Dallas 
(1985) and Elser (1986), the modulated phase method 
was presented by Levin & Steinhardt (1986). Severin 
(1989) pointed out the necessity of introducing two 
sublattices for a description of the diffraction properties 
of one class of quasicrystalline superlattices. 

The development of molecular beam epitaxy (MBE) 
enables one to prepare high-quality semiconductor 
superlattices (SLs). They form artificial one-dimensional 
lattices due to their lateral translational symmetry. The 
Fibonacci superlattices, in which the layers alternate 
according to the Fibonacci rule, have already been 
prepared and their diffraction spectra have been mea- 
sured (Merlin, Bajema, Clarke, Juang & Bhattacharya, 
1985; Todd, Merlin, Clarke, Mohanty & Axe, 1986; 
Tapfer & Horikoshi, 1987; Terauchi et al., 1988, 1990). 
Merlin et al. (1985) have found, in analogy with Levin & 
Steinhardt (1984), that, for the diffraction-curve peak 
position in reciprocal space, kpq = 2~r(p + q / r ) / d  holds, 
where p, q are integers, d - -  d A d- dBr is the average layer 
thickness, d A, d B are thicknesses of layers A, B and 
r = (5 ' / l  - 1)/2 is the golden mean. Tapfer & Horikoshi 
(1987) determined, in accordance with the projection 
method (Zia & Dallas, 1985; Elser, 1986), the thick- 
nesses of the building layers from the diffraction-curve 
peak positions. The influence of imperfect growth of the 
FSL has also been investigated numerically (Tapfer & 
Horikoshi, 1987) and the broadening of the peaks has 
been found. 

In this paper, we use the semi-kinematical approxima- 
tion of the dynamical theory of X-ray diffraction to 
calculate the diffraction curves of FSLs. The direct 
approach is to calculate the diffraction amplitude layer by 
layer but we have found a simpler recurrent formula for 
it. With the modulated phase method (Levin & 
Steinhardt, 1986), another approximate formula for the 
diffraction amplitude is derived. Both formulae-are 
compared with a numerical simulation. The fit of the 
experimental diffraction curve of a generalized FSL 

formed by stacked FSL generations using the derived 
formulae was employed to determine the structural 
parameters (thicknesses and lattice parameters) of the 
layers. 

2. Theory 

This section is organized as follows. Firstly, the method 
of diffraction-curve calculation within the semi-kinema- 
tical approximation is briefly presented. Then this exact 
approach is used to derive the recurrent formula for the 
diffraction amplitude of the FSL and the generalized 
FSL. The approximate approach is employed conse- 
quently to derive the explicit formula for the diffraction 
amplitude and for the angular positions of its maxima. 

2.1. Semi-k inemat ica l  approx imat ion  

We briefly describe the formalism of the semi- 
kinematical approximation of dynamical X-ray Bragg 
diffraction. The response of a superlattice to incoming 
X-radiation is usually calculated on the basis of the 
Takagi theory (Takagi, 1969), which gives a fully 
dynamical recurrent formula for the diffraction curve of 
an ideal multilayered system (Bartels, Hornstra & 
Lobeek, 1986). For thin multilayers with the total 
thickness being smaller than the extinction length, the 
semikinematical approximation is valid (Speriosu, 1981). 
The diffracted amplitude X : Dh/D 0 [D h and D O are the 
amplitudes of the electric induction of the diffracted and 
transmitted beams, respectively (Azaroff et al., 1974)] 
for a system containing N layers, numbering them from 
the substrate to the vacuum as represented in Fig. 1, is 
expressed by the summation formula 

N 

X(r/) -- exp(iqgu)[Xsu b + ( iKC/2yh )  ~ F k exp(-iqgt)], 
k = l  

k 

j = l  

(i) 

layer 
number z=0 

ZN N B 
Z N - t  N-I A / FIo 

o } 
5 B Fa 
4 A 

2 A F2 

1 A } FI 
0 substrate 

z 

Fig. 1. Sketch of the superlattice The measured generalized FSL built 
by stacked FSL generations from order r = 1 to order s = 10 is also 
shown. 
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In this formula, Fk = Xh,kdk sinc(rbk/2)exp(irbk/2), the 
structure factor of the kth layer, where sinc(z) = sin(z)/z, 
rbk---ukdk/yh, the phase shift on the kth layer, 
uk(rl ) = u(rl) + YhhzAq,  the wave vector departure on 
the kth layer, u(r/) = KO sin 208 + 1Kx0(1 -- Yh/Y0), the 
wave vector departure on the substrate, which linearly 
depends on the angular departure 17- 0 -  0 B from the 
exact Bragg angle 0B, and the polarization factor C -- 1 
and C = I cos20sl for cr and rr polarizations, respec- 
tively. 

The parameters of the SL are as follows. The kth layer 
thickness and lattice parameter are d k and q ,  the relative 
lattice mismatch with respect to the lattice parameter c of 
the substrate is A q  = ( q -  c)/c, all in the direction 
perpendicular to the crystal surface. The angle between 
the diffracting plane and the crystal surface is w, the 
direction cosines of diffracted and transmitted beams are 
Yh and Y'0. The Fourier coefficients of susceptibilities are 
X0, Xh.k, the wave vector transfer in the perpendicular 
direction is h: -- - 2 K  cos co sin 0 B, the wave-vector 
length in vacuum is K = 2rr/2. The reflectivity of the 
crystal is then R(rl) = II/,/YollX (o)l 2. 

In (1), it is useful to introduce the quantity 

N 

~" = y~ F k exp(-it&), (2) 
k=l  

which will be referred to as the structure-geometric 
factor (SGF). The total diffraction amplitude X (0) of the 
SL is given by the sum of the diffraction amplitude of the 
multilayer ( iKC/2yh)~(O) and the diffraction amplitude 
of the substrate Xsub(r/) (dynamically calculated Darwin- 
curve amplitude) multiplied by a factor of the phase shift 
on the layers. The Darwin curve is very narrow and the 
diffraction intensity profile is caused mainly by the 
diffraction from the multilayer. Therefore, only the 
angular dependence br(r/) will be of interest. 

coefficient exp(i~k_2) in the recurrent formula (3), linear 
in F~, depends non-linearly on the generation index k, we 
cannot find an explicit non-recurrent formula for ~-k as 
well as for the positions of the maxima of the SGF. We 
do this by another method in the following section. 

If one treats the generalization of the FSL built up as 
the sequence of stacked successive FSL generations from 
the rth to the sth generations, as for a specific example 
shown in Fig. 1, then the exact structure-geometric factor 
is found to be expressed by the sum of the SGF of FSL 
generations: 

"T'rge* n = ~ "f'k exp{i[q~a(fs+3 - - A + 3 )  + ~B(L+2 --f/¢+2)]}" 
k=r  

(4) 

This formula is more complicated than that of a simple 
FSL generation. It can be shown, however, that both FSL 
and a generalized FSL (assuming they are infinitely 
thick) belong to the same class of the local isomorphism 
(Steinhardt & Levin, 1987) (any arbitrary large surround- 
ings of any point in one SL can be found in the second 
SL), therefore both SLs exhibit the same diffraction 
spectrum. 

In particular, the 12th generation of FSL and the 
generalized FSL with r = 1, s = 10 have almost the 
same thickness, therefore, we expect their diffraction 
curves to coincide although they are not infinite. This 
was confirmed by the numerical calculation using (3) and 
(4). Their common diffraction curve is shown in Fig. 2. 
The dense set of the diffraction peaks due to the 
quasiperiodic arrangement is clearly visible. 

2.3. Quasicrystalline approach 

In the previous section, we found an exact recurrent 
formula (3) for the SGF of the FSL. This formula cannot 

2.2. Exact approach 

In this section, we use the standard approach to derive 
an exact recurrent formula for SGF of the multilayer 
where the sequence of building layers A, B forms the kth 
generation Ft of the FSL grown up from the substrate. 
We denote their thicknesses by d A, d 8, lattice parameters 
by c A, c B etc. From (2) and from the recurrent definition 
of FSL, one can derive the following recurrent formula 
for the SGF of the kth FSL generation: 

~k = -Y'k-2 + brk-1 exp(iq~k-2), (3) 

where the first two SGFs are given by the structure 
factors of the building layers: ~0 =FBexp(--itPN), 
~ l  =/ca  exp(--itPN)- The phase q~k-2 = ~afk-i + 
qbsfk_ 2 is expressed by means of the Fibonacci numbers 
fk:fl  = 0, f2 = 1,fk =fk- I  +fk-2. With this formula, we 
can calculate the reflectivity curve numerically. Since the 

10 -2 

10 -3 

o 4 
".~ I 

o 5 
I 

o 6 
I 

10 -7 

- 6 0 0 0 - 4 0 0 0 - 2 0 0 0  0 2000 4000 6000 

r/ [orc sec] 

Fig. 2. Diffraction curve (reflectivity v s  angular departure from the 
exact Bragg angle i/) of the 12th generation of the FSL as well as of 
the generalized FSL with r = 1, s --- 10. Symmetrical diffraction 002, 
substrate peak is not shown. Parameters of the FSL: GaAs substrate, 
building layer A is 15 mL GaAs, building layer B is 9 mL AlAs. 
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be re-expressed explicitly and the positions of the 
maxima cannot be found analytically. Therefore, we 
use an approximate approach based on the knowledge of 
the discrete Fourier transform of quasiperiodically 
arranged layers, which gives us an approximate formula 
for the reflectivity as well as for the positions of the 
maxima. 

The two layers A, B have different scattering properties 
(structure factors). Therefore, we decompose the sum in 
(2) into two sums going through the layers of the same 
type and we suppose that the SL is infinite 

O~ o ~  

.~o~___ F A ~ exp( - i~o t )+Fe  ~ e x p ( - @  t) 
1=1 l=l 

layer A layer B 

FAS  A -31- FoSs. (5) 

To calculate the sums SA, SB we use the self-similarity of 
the FSL. In general, the Fibonacci lattice can be viewed 
as being built by two layers of type a and ft. Their 
thicknesses, lattice parameters and phases are d k, Ac k 
and q~(d~, Ac,), where k = a, ft. The corresponding sum 

OO 

S(4~, ¢~) = ~ exp(-@k) (6) 
k=l 

will be determined later. Firstly, we show how the sums 
S A, S B are expressed. If we group together the layers in 
the FSL to formal groups starting with layer A and 
containing just one A layer, then the FSL is represented 
a s  

F =  I AB]A]AB]AB]AIABIAIABIA ]... 

and the sequence of groups of layers o t - - [ ~  and 
13 = ~ also forms the Fibonacci lattice. Thus, we have 

SA = S(~) A .qt_ (~B, ~)A)" 

If the same is done with the B layers, the FSL alternative 
arrangement is 

F = I A IBAAIBAIBAAI BAAIBA] .... 

thus 

$8 = exp(--i4~A)S(4~B + 2~ba, ~B + ~ba) 

because the sequence of groups ct =[-B--~-] and/3=[-B--~ 
following the first A layer forms the FSL. 

By calculation of the sum S(4)~, ¢~), it is possible to 
express the phases tpk by means of positions of layers z k 
according to Fig. 1. If we approximate the relative 
occurrences of layers a and 13 between the first and 
the kth layer nk(13)/nk(ct)--~ r for each layer k then 
nk(t~ ) ", zk/d~o , nk(~) ~_ rzk/d~a. We have introduced the 
averaged layer thickness d ~  = d,, + dt~r. The phases are 

then expressed as 

~0 k = nk+ 1 (Ot)q~ot q- nk+ I (/3)~b/~ 

= z,+l[u/y h + hz(d~Ac~ + dt3rA%)/d~t3] 

--zk+lx. (7) 

The one-dimensional wave vector r = x(4~, 4~t3) depends 
only on the structural composition of the whole lattice 
(and on an incidence angle of course). The expression of 
z, for the Fibonacci lattice is well known and the discrete 
Fourier transform S(qb~, 4~t~) = S(x) = ~-~. e x p ( - i r z . )  
can be calculated according to the modulated phase 
method, resulting in (Levine & Steinhardt, 1986) 

S(x) = (1/dt~ ) y~ sinc(~pq/2) exp( - i~pq /2)  8(x - tCpq), 
pq 

(8) 

where the phase ~pq = 2rtq - (d~ - dB)Kpq and the wave 
vector of the maxima Xpq = 2zr(p/r  + q)/d~t 3, where p 
and q are integers. 

2.3.1. Formula for the diffraction amplitude of  FSL. 
Rearranging (5) in the presented way, we find the final 
expression for the SGF of the infinitely long FSL: 

~°¢(r l )  = ~-~{[Fa(gpq) /da]eXp( - - i t l )pq /2  ) sinC(~pq/2) 
pq 

+ [exp(--idaxp+q,p)FB(xp+q,p)/(da + ds)] 

× exp(ir~pq/2) sinc(r~pq/2)} ~[x(0) - Xpq], 

(9) 

where the phase t~pq : 2 r r q -  (d A - d B ) M p q ,  the wave 
vector of the maxima rpq = 2 z r ( p + q r ) / d  and 
d = d a + dBr the average layer thickness. The wave- 
vector angular dependence is x(r/) = u(rl)/yh + 
hz(dAACa q-dBrAcB)/d. Expressing the angular depar- 
ture from the previous expressions as 17, we see that the 
angular positions of the maxima of ~-°°(r/) are labelled by 
two integers p and q, 

l~pq --" [-X0(1 - yh/YO)/2sin2OB] 

-- ( hzyh/ K sin 2OB)[(dA AC A -4- dB r AcB) / d ] 

+ (2/d)(~,h/sin 208)( p + qr). 

Hence, 
p = q =  

170 0 --- 

(10) 

the angular position of the main (zeroth, 
O) satellite is 

-Xo(1 - yh/YO)/2sin20B 

--(hzyh/Ksin2OB)(dAAcA + d B r A % / d  ) (11) 

Arlpq = 17oo -- Opq = (A/d)(lYhl/ sin 20B)(P + qr) (12) 

and it depends on the thicknesses d A, d B and on the 
c o m p o s i t i o n s  ACA, A c  B. Further, it follows from (10) that 
the angular departure of the pqth satellite from the main 
one is 
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and it depends only on the averaged layer thickness d. 
This formula was previously reported by Tapfer & 
Horikoshi (1987). 

To eliminate 8 functions in (9), we have to take into 
account the finite thickness of a real FSL. According to 
the standard approach in the kinematical theory of 
diffraction, we multiply the electron susceptibility by the 
shape function, which is 1 inside and 0 outside the 
superlattice. In the Fourier transform, this causes the 
convolution of the diffraction curve of the infinitely long 
lattice with the Fourier transform of the shape function. 
Formula (9), rewritten for the SGF of the FSL with 
thickness L, is then 

~'~ (17) -- ~ {[F a (Upq)/da] sinc(~pq/2) exp(-i@pq/2) 
Pq 

+ [exp(--idaKp+q,p) FB(Up+q.p)/(da + dB)] 

x sinc(r~pq/2)exp(ir~pq/2)} 

x Lsinc[(u - Upq)L/2Yh ] 

x e x p [ - - i ( u -  Upq)L/2Yh ], (13) 

where Upq = u(rlpq). The factor in the sum cannot be 
factorized into the product of the structure and geometric 
factors like in the case of periodic SL (Hol2~, Kubrna & 
Ploog, 1990) rather it has a form like the diffraction 
amplitude of a system of two interpenetrating incom- 
mensurate sublattices. 

The zeroth-order maximum (the main satellite) fulfils 
the condition ~pq = O, which requires p -- q = O. More- 
over, we can define the approximates of the main 
maxima requiring ~pq ~ 0, from which q - p r  _~ 0, so 
the indices p and q can be the subsequent Fibonacci 
numbers (Steinhardt & Levine, 1987) or these multiplied 
by the same arbitrary integer. 

For greater angular departures 17, the reflectivity 
decreases because FA, B diminishes. 

3. Numerical simulations 

We have performed numerical calculations of diffraction 
curves of FSLs using both exact and quasicrystalline 
approximate methods. Within the exact method, the SGF 
of one finite generation of the FSL is directly calculated 
by means of the exact recurrent formula (3). Within the 
approximate method, the SGF of a finite FSL is given by 
(13). We have found that the approximated curve fits the 
exactly calculated one very well. This is shown in Figs. 3 
and 4 for two arbitrarily chosen angular regions of the 
diffraction curve. The approximated curve has the same 
profile as the exact one but the absolute intensities differ 
slightly. 

The summation over an infinite number of indices p 
and q in (13) was replaced by a summation over a small 
number of them where a good convergence was 
obtained. If the SL thickness is increased, new low- 

intensity maxima occur and the p, q region must be 
increased to calculate this profile. 

The self-similarity of the curve is expressed by the 
self-similarity of Aop q as represented by (12) by the 
invariance with respect to any multiplication by 
r + st, r, s integers. This property is valid for both cases 
dB/d a :/: r and dB/d a = r, as was found recently (Merlin 
et al., 1985), and depends only on the averaged layer 
thickness d and not on the chemical composition. 

The agreement of both diffraction curves allows us to 
use (10) to label the peak positions. 

4. Experiment 

The generalized FSL with r = 1 and s -- 10, as described 
at the end of §2.2 and shown in Fig. 1, was used as the 
sample. The multilayer was grown on a GaAs (001) 
substrate. The nominal thickness of the GaAs layer A is 

l o  4 

"~ 1 0  5 

1 0  6 

- 1 0 0 0  

----) 

r-. 

H 

f 

- 9 0 0  - 8 0 0  

O 

i . z  

- 7 0 0  - 6 0 0  - 5 0 0  

"r/ [arc  sec] 

Fig. 3. Comparison of the diffraction curves of the 12th generation of 
FSL calculated using the exact formula (3) (full line) and the 
approximate formula (13) (dashed line). The peaks are labelled by 
two integers p, q according to formula (10). Diffraction and SL 
parameters are the same as in Fig. 2. 

10 o 

tt3 t O  c'4 
00 - 5  ~ I 

> 1 0  oo 

~ 10 - 6  

,o  

i . . . . . .  

- 6 0 0 0  - 5 9 0 0  - 5 8 0 0  - 5 7 0 0  - 5 6 0 0  - 5 5 0 0  

Fig. 4. As Fig. 3 for a different angular region. 
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15 monolayers (mL, half of the lattice parameter) and 
143 layers in total, that of AlAs layer B is 9 m L  (88 
layers in total), total thickness of the superlattice is 
831 nm. Owing to the pseudomorphic structure of the SL, 
the lattice parameter c A has been supposed to equal that 
of the substrate c = 5.65325 ,~. Therefore, the three free 
structural parameters (thicknesses d A, d e and lattice 
parameter CB) had to be determined by a fit of the 
measured diffraction curve. The measurement of the 
diffraction curve was made using a double-crystal X-ray 
diffractometer with Cu Ka  symmetrical 1 11 diffraction 
on a perfect silicon crystal and symmetrical 002 
diffraction on the sample. 

The fit of the relative peak distances according to (12) 
gives the averaged layer thickness d = d  A + d B r  = 
56.7 (2)A,. Use of (11) for the position of the zeroth- 
order satellite with respect to the position of the substrate 
peak gave the parameter c B as a function of the ratio 
d e / d  A keeping d fixed. To estimate the third free 
parameter cB, the third condition is necessary. Usually 
the fit of the whole experimental diffraction curve is 
employed in such cases. Low primary intensity involved 
in the measurement made it impossible because the low- 
intensity peaks, which are more sensitive to the d B / d  A 
ratio, were not distinguished. To have another condition 
to estimate the remaining parameter, we have supposed 
that the ratio d a / d  A equals the ratio of the nominal 
thicknesses (9mL AIAs/15mL GaAs),  which was 
assumed by the producer of the sample. The calculation 
of all three parameters under this assumption gave 
the values d A =  14.6(1)mL, d e = 8 . 8 ( 1 ) m L  , c B =  
5.668 (1) ,~,. The lattice parameter c e was found to be the 
same as the value usually found in the periodic 
GaAs/AIAs superlattices measured with high precision 
(Ho13), Kub6na & Ploog, 1990). This confirms the 

- 2  ~ 0 

10 o o" o 

~_~ I 

~T T 

14 I 
10 ~._, ~. 

- 5 0 0 0  - 3 0 0 0  - 1 0 0 0  lOO( 

o 

i 

c,qt¢ ) 
i i 

i 3000 5000 

Fig. 5. Experimental diffraction curve (points) and the best-fitted curve 
(full line) of the generalized Fibonacci superlattice described in the 
text. The experimental arrangement enabled the measurement of 
intensity over four orders of magnitude. 

validity of our assumption. The measured and the best- 
fitted curves are shown in Fig. 5. 

5. Concluding remarks 

Full calculation of the diffraction curve of the Fibonacci 
superlattice in the semi-kinematical approximation with 
two approaches has been reported. We have compared 
the results of the exact formula (3) calculated recurrently 
with those of the approximate formula (13) derived by 
means of the discrete Fourier transform of quasiperiodi- 
cally arranged layers in the infinite lattice and succes- 
sively restricted to a finite thickness. Good agreement of 
the peak positions and of the intensities of the diffraction 
curves was found. The agreement between exact and 
approximate diffraction curves increases with the number 
of layers, hence increasing the SL thickness. The exact 
approach can be used for the diffraction-curve numerical 
calculation, while the approximate approach provides 
clearer information on the diffraction-curve prof'fle, 
mostly from equation (10), which describes the diffrac- 
tion-curve peak positions. The derived approximate 
formulae were found to be useful to fit the layer 
thicknesses and lattice parameters of the generalized 
Fibonacci superlattice. We have shown that it is possible 
to fit the structural parameters of this quasiperiodic 
superlattice even if low experimental resolution did not 
allow the fitting of the whole diffraction curve. 
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